oasislmf.pytools.common.input_files =================================== .. py:module:: oasislmf.pytools.common.input_files Attributes ---------- .. autoapisummary:: oasislmf.pytools.common.input_files.logger oasislmf.pytools.common.input_files.EVENTRATES_FILE oasislmf.pytools.common.input_files.OCCURRENCE_FILE oasislmf.pytools.common.input_files.PERIODS_FILE oasislmf.pytools.common.input_files.QUANTILE_FILE oasislmf.pytools.common.input_files.RETURNPERIODS_FILE Functions --------- .. autoapisummary:: oasislmf.pytools.common.input_files.read_event_rates oasislmf.pytools.common.input_files.read_quantile oasislmf.pytools.common.input_files.read_occurrence oasislmf.pytools.common.input_files.read_periods oasislmf.pytools.common.input_files.read_return_periods Module Contents --------------- .. py:data:: logger .. py:data:: EVENTRATES_FILE :value: 'event_rates.csv' .. py:data:: OCCURRENCE_FILE :value: 'occurrence.bin' .. py:data:: PERIODS_FILE :value: 'periods.bin' .. py:data:: QUANTILE_FILE :value: 'quantile.bin' .. py:data:: RETURNPERIODS_FILE :value: 'returnperiods.bin' .. py:function:: read_event_rates(run_dir, filename=EVENTRATES_FILE) Reads event rates from a CSV file Args: run_dir (str | os.PathLike): Path to input files dir filename (str | os.PathLike): event rates csv file name Returns: unique_event_ids (ndarray[oasis_int]): unique event ids event_rates (ndarray[oasis_float]): event rates .. py:function:: read_quantile(sample_size, run_dir, filename=QUANTILE_FILE, return_empty=False) Generate a quantile interval Dictionary based on sample size and quantile binary file Args: sample_size (int): Sample size run_dir (str | os.PathLike): Path to input files dir filename (str | os.PathLike): quantile binary file name return_empty (bool): return an empty intervals array regardless of the existence of the quantile binary Returns: intervals (quantile_interval_dtype): Numpy array emulating a dictionary for numba .. py:function:: read_occurrence(run_dir, filename=OCCURRENCE_FILE) Read the occurrence binary file and returns an occurrence map Args: run_dir (str | os.PathLike): Path to input files dir filename (str | os.PathLike): occurrence binary file name Returns: occ_map (ndarray[occ_map_dtype]): numpy map of event_id, period_no, occ_date_id from the occurrence file .. py:function:: read_periods(no_of_periods, run_dir, filename=PERIODS_FILE) Returns an array of period weights for each period between 1 and no_of_periods inclusive (with no gaps). Args: no_of_periods (int): Number of periods run_dir (str | os.PathLike): Path to input files dir filename (str | os.PathLike): periods binary file name Returns: period_weights (ndarray[period_weights_dtype]): Period weights .. py:function:: read_return_periods(use_return_period_file, run_dir, filename=RETURNPERIODS_FILE) Returns an array of return periods decreasing order with no duplicates. Args: use_return_period_file (bool): Bool to use Return Period File run_dir (str | os.PathLike): Path to input files dir filename (str | os.PathLike): return periods binary file name Returns: return_periods (ndarray[np.int32]): Return Periods use_return_period_file (bool): Bool to use Return Period File