oasislmf.preparation.il_inputs¶
Functions¶
|
merge selected il_inputs with the correct calc_rule table and return a pandas Series of calc. rule IDs |
|
Generates and returns a Pandas dataframe of IL input items. |
Module Contents¶
- oasislmf.preparation.il_inputs.get_calc_rule_ids(il_inputs_calc_rules_df, calc_rule_type)[source]¶
merge selected il_inputs with the correct calc_rule table and return a pandas Series of calc. rule IDs
- Args:
il_inputs_calc_rules_df (DataFrame): IL input items dataframe calc_rule_type (str): type of calc_rule to look for
- Returns:
pandas Series of calc. rule IDs
- oasislmf.preparation.il_inputs.get_il_input_items(gul_inputs_df, exposure_data, target_dir, logger, exposure_profile=get_default_exposure_profile(), accounts_profile=get_default_accounts_profile(), fm_aggregation_profile=get_default_fm_aggregation_profile(), do_disaggregation=True, oasis_files_prefixes=OASIS_FILES_PREFIXES['il'], chunksize=2 * 10**5)[source]¶
Generates and returns a Pandas dataframe of IL input items.
- Parameters:
gul_inputs_df (pandas.DataFrame) – GUL input items
exposure_data – object containing all information about the insurance policies
target_dir – path to the directory used to write the fm files
logger – logger object to trace progress
exposure_profile (dict) – Source exposure profile (optional)
accounts_profile (dict) – Source accounts profile (optional)
fm_aggregation_profile – FM aggregation profile (optional)
fm_aggregation_profile – dict
do_disaggregation – whether to split terms and conditions for aggregate exposure (optional)
do_disaggregation – bool
- Returns:
IL inputs dataframe
- Return type:
pandas.DataFrame
:return Accounts dataframe :rtype: pandas.DataFrame