oasislmf.preparation.il_inputs¶
Functions¶
|
Merges IL inputs with the correct calc_rule table and returns calc rule IDs. |
|
Generates and returns a Pandas dataframe of IL input items. |
Module Contents¶
- oasislmf.preparation.il_inputs.get_calc_rule_ids(il_inputs_calc_rules_df, calc_rule_type)[source]¶
Merges IL inputs with the correct calc_rule table and returns calc rule IDs.
- Args:
il_inputs_calc_rules_df (pandas.DataFrame): IL input items dataframe. calc_rule_type (str): Type of calc_rule to look for.
- Returns:
pandas.Series: Series of calculation rule IDs.
- oasislmf.preparation.il_inputs.get_il_input_items(gul_inputs_df, exposure_data, target_dir, logger, exposure_profile=get_default_exposure_profile(), accounts_profile=get_default_accounts_profile(), fm_aggregation_profile=get_default_fm_aggregation_profile(), do_disaggregation=True, oasis_files_prefixes=OASIS_FILES_PREFIXES['il'], chunksize=2 * 10**5)[source]¶
Generates and returns a Pandas dataframe of IL input items.
Also writes FM files (fm_policytc, fm_profile, fm_programme, fm_xref) to target_dir.
- Args:
gul_inputs_df (pandas.DataFrame): GUL input items. exposure_data: Object containing all information about the insurance policies. target_dir (str): Path to the directory used to write the FM files. logger: Logger object to trace progress. exposure_profile (dict, optional): Source exposure profile. accounts_profile (dict, optional): Source accounts profile. fm_aggregation_profile (dict, optional): FM aggregation profile. do_disaggregation (bool, optional): Whether to split terms and conditions
for aggregate exposure.
oasis_files_prefixes (dict, optional): Dictionary of file prefixes for FM output files. chunksize (int, optional): Number of rows to write per chunk when writing CSV files.
- Returns:
- pandas.DataFrame: IL inputs dataframe with output_id, layer_id, and other
FM-related columns.