Source code for mean_damage_ratio

import numba as nb
import numpy as np

from oasislmf.pytools.lec.utils import get_mean_idx_data


@nb.njit(cache=True, error_model="numpy")
[docs] def output_mean_damage_ratio( items, items_start_end, row_used_indices, outloss_vals, period_weights, max_summary_id, ): # Track number of entries per summary_id summary_counts = np.zeros(max_summary_id, dtype=np.int32) # First pass to count how many times each summary_id appears for idx in row_used_indices: summary_id, period_no = get_mean_idx_data(idx, max_summary_id) summary_counts[summary_id - 1] += 1 # Compute cumulative start indices pos = 0 for idx in range(max_summary_id): if summary_counts[idx] > 0: items_start_end[idx][0] = pos # Start index pos += summary_counts[idx] items_start_end[idx][1] = pos # End index # Reset summary counts for inserting data summary_counts[:] = 0 # Track which period_no are used if period_weights exists is_weighted = len(period_weights) > 0 used_period_no = np.zeros(len(period_weights), dtype=np.bool_) # Second pass to populate the data array for idx in row_used_indices: summary_id, period_no = get_mean_idx_data(idx, max_summary_id) # Compute position in the flat array insert_idx = items_start_end[summary_id - 1][0] + summary_counts[summary_id - 1] # Store values items[insert_idx]["summary_id"] = summary_id items[insert_idx]["value"] = outloss_vals[idx] if is_weighted: # Fast lookup period_weights as they are numbered 1 to no_of_periods items[insert_idx]["period_weighting"] = period_weights[period_no - 1]["weighting"] items[insert_idx]["period_no"] = period_no used_period_no[period_no - 1] = True summary_counts[summary_id - 1] += 1 return is_weighted, used_period_no